(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ack(0', y) → s(y)
ack(s(x), 0') → ack(x, s(0'))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
ack(0', y) → s(y)
ack(s(x), 0') → ack(x, s(0'))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
ack
(6) Obligation:
Innermost TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
ack
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ack(
gen_0':s2_0(
1),
gen_0':s2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, 0)))
Induction Step:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, +(n4_0, 1)))) →RΩ(1)
ack(gen_0':s2_0(0), ack(s(gen_0':s2_0(0)), gen_0':s2_0(+(1, n4_0)))) →IH
ack(gen_0':s2_0(0), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(14) BOUNDS(n^1, INF)